

Potential conflicts of interest

- PI of the Brigham & Women's Hospital DEcIDE-2 Research Center on Comparative Effectiveness Res.
- PI of the DEcIDE Methods Center on Comparative Effectiveness Research (AHRQ)
- Co-investigator of the Mini Sentinel System (FDA)
- No paid consulting or speaker fees from pharmaceutical manufacturers
- Consulting/ board membership in past year:
 HealthCore; The Lewin Group; WHISCON; Booz & Co
- Investigator-initiated research grants from Pfizer, Novartis, HealthCore
- Multiple grants from NIH to study all sorts of things

Dealing with shifts in use patterns over time

Patient-level issues

- Patients switch from current treatment to new treatment
 - Because of perceived treatment failure
 - Because of perceived adverse outcomes
- As time moves on the patient population receiving the new drug expands and so does the indication
- On-label indication expansion is more often covered by insurance than off-label use

Physician-level issues

- Early adopters of new technologies
 - Not an analytic problem if this is a random character trait
 - But they may also be those treating sicker patients
 - Or providing better/worse care in general

Soft on patient demands

Triggered by direct-to-consumer marketing

System-level issues

- Medication price: out-of-pocket cost
- Formulary positioning (several months lag time)
- Prior authorization (particularly in early months)
- Step-up care requirements
- Treatment guidelines (longer lag time)

Special issues with first of class medications

- * Lack of suitable comparison group
 - Compare to usual care?
 - Is there anybody left who is not treated with new drug?
 - If not, should we use historical controls?
 - Time trend analysis, using time of marketing as IV for an IV analysis?

Inspect Table 1 over time						
	0 to 6 months		7 to 12 months		13 to 18 months	
	Drug N	Drug O	Drug N	Drug O	Drug N	Drug O
Patient factors	% % %	% % %	% %	% % %	% % %	% %
Physician factors	% %	% % %	% %	% % %	% %	% %
System factors	% % %	% % %	~~ % %	~~ % %	~~ % %	% %
	M-distance*		M-distance		M-distance	
*Mahalanobis distance						

Is there a problem with PS matching?

- Fixed ratio matching: transparency versus efficiency
 - 1:1 or 1:n matching produces nice Table 1's
 - 1:n matching will lead to discarding some potential matches
- Multiple reference groups: new high-dimensional optimal matching algorithm now available
- With few exposed to the new drug fitting a rich PS model may be difficult -> Disease risk score?
- DRS may be fitted in historical data
 - Less representative for the study population
 - Combination of PS and DRS with time-varying influence on covariate balancing?

Thank you very much

How to demonstrate changes in treatment choice confounding over time

- Table 1 comparisons
- Malhalanobis distance
- Explained variation and components of variation (R2, c)
- Propensity score distributions (% overlap, % matched)

21